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Neuronal homeostasis: time for a change?
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Abstract Homeostatic processes that regulate electrical activity in neurones are now an
established aspect of physiology and rest on a large body of experimental evidence that points
to roles in development, learning and memory, and disease. However, the concepts underlying
homeostasis are too often summarized in ways that restrict their explanatory power and obviate
important subtleties. Here, we present a review of the underlying theory of homeostasis – control
theory – in an attempt to reconcile some existing conceptual problems in the context of neuronal
physiology. In addition to clarifying the underlying theory, this review highlights the remaining
challenges posed when analysing homeostatic phenomena that underlie the regulation of neuro-
nal excitability. Moreover, we suggest approaches for future experimental and computational
work that will further our understanding of neuronal homeostasis and the fundamental neuro-
physiological functions it serves.
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Introduction

Our central nervous system comprises billions of neuro-
nes, all of which are excitable and each of which is coupled
to potentially thousands of neighbours. Individually,
neurones are exquisitely dynamic, capable of responding
to chemical and electrical signals over multiple timescales
and modifying their properties and ongoing activity in
ways that collectively give rise to our every thought and
action. In spite of the inherent complexity of nervous
systems, we already understand some of the fundamental
principles that govern the patterns of connectivity
and signalling activity in neurones. Activity-dependent
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synaptic plasticity serves as a mechanism for at least
two (not necessarily distinct) processes: storing memories
and establishing functional networks during development
(Buonomano & Merzenich, 1998; Martin et al. 2000).
It is also known that the intrinsic properties of cells –
properties that dictate how a cell integrates and responds
to electrical signals – are themselves capable of being
modified in response to particular patterns of activity in
ways that facilitate learning and development (Daoudal
& Debanne, 2003; Disterhoft & Oh, 2006). Both of these
modification processes, synaptic and intrinsic, therefore
shape activity and are simultaneously shaped by activity.
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Described in this way, it is remarkable that the CNS
functions in a stable manner at all: small perturbations
in activity can conceivably alter the functional properties
of an entire network of cells, which can in turn lead
to further modifications elsewhere. What system is in
place to keep these modification processes in check? There
can be no central, global control mechanism monitoring
and adjusting the properties of each individual cell in a
coordinated manner. Instead, global control is observed as
an emergent feature of the nervous system, arising from the
combined effects of a hierarchy of regulatory mechanisms
operating on the level of cellular networks, individual cells,
subcellular domains and, ultimately, individual genes and
proteins.

Homeostatic processes that regulate levels of electrical
activity in neurones are currently the subject of
intense investigation. Not only do these phenomena
contribute to the development and ongoing function
of neuronal networks, they also stand as important
determinants of the nervous system’s response to physio-
logical insult and disease (Turrigiano & Nelson, 2004;
Davis, 2006; Marder & Goaillard, 2006; Turrigiano,
2007). Classically, activity-regulating mechanisms are
split into two categories: those that exert their effect
by modifying synapses and those that modify intrinsic
membrane properties (Desai, 2003). Although these
categories can be distinguished by their underlying
mechanisms – prototypical examples include glutamate
receptor insertion and removal in the synaptic case
(Turrigiano et al. 1998; but see Echegoyen et al. 2007)
and the modification of voltage-gated ion channel density
in the intrinsic case (Desai et al. 1999) – it is important
to point out that both categories overlap to a degree, and
must interact in the system as a whole. Overlap is evident
both in terms of the underlying signalling pathways and
in terms of their net effect on physiological properties.
For example, intracellular calcium concentration has been
identified experimentally as an important signal for both
synaptic and intrinsic homeostasis (Turrigiano et al. 1994;
Yeung et al. 2004; Thiagarajan et al. 2005; O’Leary et al.
2010) and synaptic properties have a substantial impact on
intrinsic excitability as a result of ongoing synaptic activity
(Chance et al. 2002).

The diversity seen among the mechanisms of neuro-
nal homeostasis is also a characteristic of their effects.
We know, for example, that rhythm-generating circuits
in crustaceans achieve robust output by modifying the
membrane conductance properties of their constituent
cells in response to pharmacological manipulation and
physical circuit lesion (Turrigiano et al. 1994) and
that mammalian central neurones modify their intrinsic
membrane properties in a way that counters the effects
of imposed changes in excitatory drive (Desai et al.
1999; Brickley et al. 2001; van Welie et al. 2006; Maffei

& Turrigiano, 2008; O’Leary et al. 2010). More sub-
tle functional roles for homeostasis of neuronal activity
have also been identified, for example, in maintaining
the fidelity of long-term memories in networks with
cell turnover (Meltzer et al. 2005) and in enhancing
the learning performance of canonical synaptic plasticity
rules, such as Hebbian learning (Triesch, 2007).

This review focuses on how intrinsic properties of
neurones are regulated via homeostatic mechanisms,
especially those which regulate membrane conductances.
Far from being a simple story, experimental evidence
and theory suggest that neurones face and solve
an astonishingly complex problem in regulating their
electrical properties, and a significant part of how this
regulation is achieved remains to be understood. A
comprehensive understanding of homeostasis requires a
rigorous and general theory. Therefore, a large part of
this review is devoted to a critique of the established
theories, from which we will introduce the concepts of
control theory – a theoretical discipline that was originally
developed to describe general homeostatic phenomena,
and which is of particular use in understanding neuronal
homeostasis (Davis, 2006). We will focus on principles,
with the dual aim of illustrating the subtleties of homeo-
static control whilst highlighting the complexity of several
outstanding questions.

The need for control

The regulation of a neurone’s intrinsic properties in part
depends on regulating the expression of proteins, such as
those that form ion channel subunits. It therefore makes
sense to consider how cells regulate protein expression
in general before discussing homeostatic processes that
control neuronal excitability per se. It is worth pointing
out that what follows is a necessarily simplified account
in terms of level of biological detail, with the aim of
emphasising concepts. Furthermore, intrinsic properties
are affected by factors other than ion channel expression –
for example, post-translation modification of membrane
channels and their interactions with other proteins and
ligands – any of which can cause dramatic changes in the
biophysical properties of a neurone without necessarily
altering its ion channel expression profile (Levitan, 1994
2006; Davis et al. 2001). However, arguments that apply to
channel density or expression level apply to other factors
so there is nothing to be lost conceptually by restricting
our discussion.

We know that the level of expression of a given
protein in a cell is controlled – levels do not escalate
arbitrarily or disappear at random under non-pathological
conditions (Kozak, 1992). In other words, cells have a
‘target’ expression level that is achieved and maintained.
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Even within a particular cell type, these targets are not
fixed: the developmental context will typically determine
whether more or less of a particular protein is needed at
any given time. For example, the expression of ion pumps
such as chloride–potassium co-transporters is triggered
at a particular developmental stage (Rivera et al. 1999).
Thus, homeostatic systems do indeed track a target, but in
general this can be a moving target with heterogeneity in
its profile over any population of cells.

The goal of imposing target expression profiles
cannot be achieved by merely turning a gene ‘on’ or
‘off’ in a given cell. Existing proteins are constantly
being modified, trafficked and degraded; therefore, basal
production levels must balance such dissipative processes
if stable expression levels are to be maintained. Moreover,
biochemical signalling, and gene expression in particular,
is stochastic, and therefore noisy. Noise leads to substantial
fluctuations in protein expression, as demonstrated by
direct measurements in single-cell organisms (Elowitz
et al. 2002).

Given these constraints, it is clear that the rates of the
processes that govern gene expression need to be modified
by some control mechanism that is responsive to changes
in demand. In other words, regulatory mechanisms must
incorporate a feedback signal even in the absence of the
external perturbations that are the focus of most theories
and experiments in the field of neuronal homeostasis.
In this sense it is evident that many low-level cellular
processes must be homeostatic.

The problem of low-level gene regulation has prompted
a great deal of experimental and theoretical work in
systems biology (Barabasi & Oltvai, 2004). Importantly,
it is now known that the genetic regulatory pathways of
many individual gene products comprise feedback and
feedforward control loops. These loops operate on the
level of transcription and translation, and evidence for
their existence has been found in all species that have
been thus far examined, from prokaryotes to eukaryotes,
including humans (Lee et al. 2002; Shen-Orr et al. 2002;
Tsang et al. 2007).

All of these findings, which are relevant to generic
cellular processes in all organisms and cell types, have
important implications for homeostasis in the nervous
system. For example, it is possible that certain types of
homeostatic compensation that occur in neurones are
merely a consequence of the collective, low-level regulation
of the cell’s basic components, and not something end-
owed upon neurones due to their role in information
processing per se. Indeed, a recent study provides an
example of low-level compensation of intrinsic properties
that is achieved via post-transcriptional interference of
channel-coding genes, rather than being coupled to
electrical activity (MacLean et al. 2003). Nonetheless,
it is also possible and even likely that neurones have

evolved specialized control machinery, particularly where
ion channel regulation is concerned. Firstly, their role
in information processing means that neurones must
regulate their biophysical properties so as to satisfy specific
constraints. Secondly, due to their connectivity, neuronal
activity is tightly coupled over a multicellular network,
so regulatory adjustments within individual cells have
knock-on effects that impinge on the organism as a whole
(Marder et al. 2010).

Together, these observations suggest that homeostatic
mechanisms fit into a hierarchy which operates on
the levels of single proteins, protein networks, whole
cells, cellular networks, organs and ultimately entire
organisms. The question of how mechanisms interact
across hierarchical levels is of central importance in neuro-
nal homeostasis. We will return to this problem after
defining homeostasis in its most general form on a single
level.

Static or homeostatic?

What do we mean by ‘homeostatic regulation’? Definitions
differ, but a common theme is that of a system returning
to a ‘set-point’, ‘target value’ or ‘previous state’ following
some perturbation (Turrigiano, 1999; Turrigiano &
Nelson, 2004; Davis, 2006; O’Donnell & Nolan, 2011).
Such a definition can have an overly restrictive inter-
pretation: in the most extreme form it could be construed
to mean that nothing really changes in homeostatic
systems! For example, as O’Donnell & Nolan (2011) have
recently pointed out, naı̈ve homeostatic models are hard
to reconcile with observed heterogeneities in intrinsic
properties of cells over a defined brain region. In principle,
this is at odds with one of the seminal computational
studies of homeostasis (Abbott & LeMasson, 1993) which
identified emergent heterogeneities in the homeostatically
regulated conductance profiles of coupled neurones,
in spite of their target activity levels being identical.
Experimentalists and theoreticians are, of course, acutely
aware of the complexity of biological systems, so there
is sometimes a need to describe phenomena such as
homeostasis in a simplified manner for practical reasons.
There is, however, a danger that important subtleties
may get lost in the general discussion. This may result
in apparent contradictions or the emergence of super-
fluous concepts such as ‘allostasis’ (‘stability through
change’) – a term necessitated by the mistaken view that
homeostatic processes imply static systems. This idea is
comprehensively critiqued in Day (2005).

Some authors have attempted to solve the problem of
finding an adequate yet simple conceptual model of neuro-
nal homeostasis by restricting the range of phenomena that
homeostasis applies to (Davis, 2006), or by embellishing a
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static theory with the notion of ‘customizable set points’
(Turrigiano, 2008). We do not believe the underlying
theory requires restriction or embellishment for it to be
compatible with physiology, however. In order to motivate
a discussion of this theory we have tried to identify three
potential sources of its oversimplification:

1. Targets. The stipulation that the target output of a
homeostatic system is fixed in time or in space is
unnecessary and restrictive.

2. Loci. The variable(s) being manipulated and the
variable(s) being monitored in a homeostatic system
are distinct in general and can be a subset of the total
set of available variables.

3. Hierarchies and emergent behaviour. Homeostatic
systems interact in general and individually they can
be broken down into underlying regulatory processes
that give rise to the apparent regulation of higher-level,
collective processes.

If the results of theoretical and experimental studies
are to be interpreted in a coherent theory, we need a
way to compare varying definitions of homeostasis and
the physiological processes they apply to. Fortunately,
a rigorous theory of homeostatic control already exists
in the wider field of cybernetics, which was originally
defined as the study of “control and communication in
the animal and the machine” (Wiener, 1965). It is inter-
esting to note that despite having its origins in physio-
logy, cybernetics, and its daughter-field, control theory,
together comprise a wealth of valuable theory that is rarely
mentioned in contemporary experimental physiology
literature.

Control theory: the mother of homeostasis

A typical model of neuronal homeostasis is depicted in
Fig. 1A: a neurone has a target activity level which may
be perturbed by changes in external excitatory drive. In
this example, the cell compensates for transient increases
in excitatory input by changing the surface expression of
hyperpolarising channels and leak channels. Importantly,
the same cell has a target activity level which varies over
a period of time, for example, as the cell matures. This
entails distinct compensation strategies: the immature
cell might favour up-regulation of leak channels, whilst
the mature cell selectively up-regulates hyperpolarising
channels. The signal that causes changes in channel
expression in this example is calcium concentration,
which varies as the result of voltage-gated calcium
channels. Thus, the variable being controlled (‘average
activity’) is distinct from the signal being monitored
(‘calcium concentration’). Figure 1B illustrates homeo-
static regulation in another general setting. Many cell
properties can undergo plastic changes in their properties

(such as overall excitability) in response to some signal,
which may be a particular activity pattern or the action of
a signalling molecule. The archetypal examples are stable
potentiation or depression of a property; this stability can
be conferred by homeostatic regulation, whilst the net
change in the property corresponds to a change in the
homeostatic target.

These hypothetical yet biologically plausible models
qualitatively describe many observed instances of neuro-
nal homeostasis whilst exemplifying some of the subtle
points we have already mentioned, including the notion
that targets need not be fixed, and that signals that are
compared to this target (e.g. calcium concentration) can
be distinct from the variable being controlled (spiking
activity). Moreover, they illustrate some of the key
components of an abstract control system, which we will
introduce next.

Figure 2A shows a diagram of the canonical feedback
control system. The process being controlled (the plant in
engineering terminology) merely transforms inputs into
outputs. A familiar example of a plant is a single neurone
which transforms inputs in the form of synaptic currents
into a temporal pattern of neurotransmitter release at its
axon terminals. However, in general, the identity of inputs
and outputs may be less obvious. For example, in the
context of protein regulation, the plant can be regarded
as the cell, but the inputs might be intracellular signals
that activate transcription factors, whilst the outputs could
be the expression level of the protein being regulated,
or even the state of other physiological variables such
as membrane potential which may be influenced by the
protein in question.

Control systems are faced with the goal of driving
the plant’s output toward a target output profile by
delivering a control signal to the plant’s inputs. The
inputs may also be subjected to external perturbations.
A good example of a ‘target’ might be the characteristic
changes in biophysical properties of neurones that occur
during cortical development (Ben-Ari & Spitzer, 2010),
whilst ‘external disturbances’ in network activity occur
during, say, sensory deprivation (Maffei & Turrigiano,
2008). Two generic control paths exist: feedforward and
feedback, so-called because the former feeds a control
signal to the plant inputs but is blind to the outputs,
whilst the latter reads plant outputs and feeds a control
signal back to the input. There are numerous options
for control strategies with important distinctions that
are relevant to their biological plausibility. In order to
qualitatively illustrate the behaviour of a generic control
system, we have constructed a specific model of a plant
with a time-varying target output and step-disturbance
(Fig. 2B, Fig. 3); the mathematical details of this example
are included in the Appendix.

A subset of the plant outputs is accessible to the feedback
control process; this subset (which may not encompass the
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entire set of outputs) is called the set of observables. In our
example, observables could be resting membrane potential
itself, or some other variable which depends on resting
potential such as spiking rate or intracellular calcium
concentration. Clearly, observables need to be measurable
by biological sensor mechanisms that are known to exist

in the cell. Intracellular calcium concentration is often
favoured because many calcium-dependent signalling
pathways are present in neurones, and calcium buffers
are known to interfere with homeostatic compensation in
a variety of experimental settings (Turrigiano et al. 1994;
Berridge et al. 2003; Davis, 2006).

Figure 1. A typical model of neuronal homeostasis in different contexts
A, a timeline spanning the lifetime of a neurone is depicted, along with a target activity profile which decreases
as the cell matures. At both immature and ‘mature’ stages, the cell is capable of homestatically compensating for
transient increases in external excitatory input which tend to increase its activity above the target level. Internal
calcium concentration, which is often found to be a key ‘error signal’, is seen to correlate with changes in excitatory
drive, but on a slower timescale that reflects an accumulated, or integrated, deviation from the target activity
level. In this example, compensation is achieved by regulating the expression of different types of membrane
conductances in response to changes in the error signal. The strategies for achieving compensation differ between
the immature and mature stages (as illustrated by the different ratios of membrane channels), so as to achieve
a different target output at the same time as compensating for the same change in external input. B, in a more
general context, homeostatic regulation can be reconciled with stable plastic changes (such as those induced by
long-term potentiation or depression) by viewing ‘stable changes’ as changes in the homeostatic target.
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Observables may be transformed by the feedback
controller (time-averaged or amplified, for example)
before being compared against a target . The result of
this comparison is an error signal, representing the
difference between the target state and the observed
state (Fig. 2B). This error signal forms the basis of
the feedback control signal, which is delivered back
to the plant as an input (Fig. 2A). If the variable
of interest is resting membrane potential, then the
error signal may be coded as intracellular calcium
concentration, which varies with membrane potential due
to voltage-dependent calcium channels. This example also
illustrates a component of time-averaging (integration),
since the dynamics of calcium fluctuations are filtered
versions of the fluctuations in membrane potential due to
calcium channel kinetics, buffering and secondary release
systems such as internal stores (Berridge et al. 2003).

Feedback signals can be derived from the error
signal in many ways; we will introduce several
well-known feedback control paradigms. Proportional
control, or P-control, generates a signal that is
equal to a scaled version of the error signal
(Fig. 2B and Fig. 3). Returning to the example in Fig. 1,
the expression level of the various channels at any
given time would be proportional to the difference
in activity level from the target value at that time.
Proportional controllers produce a homeostatic response
when the feedback is negative, but suffer from the problem

that they do not ever achieve their target value, nor
do they provide full homeostatic compensation: they
exhibit a constant error, regardless of how large the
amplification factor (or gain) is set (Bakshi & Bakshi,
2009). Voltage-gated conductances can be thought of
individually as proportional controllers. For example, the
hyperpolarization-activated mixed-cation current (Ih) is
activated when the membrane potential becomes very
negative (<−70 mV) and has a reversal potential of about
–30 mV. Thus, Ih tends to drive the membrane potential
back to a more positive value when it is hyperpolarised.
The ‘set point’ is therefore the reversal potential of the
conductance, but the channels themselves can never drive
the membrane potential to this value because the channels
inactivate and the current they pass tends to zero as the
reversal potential is approached.

One way of eliminating the steady error that
P-controllers introduce is to make the control signal
proportional to the total error accumulated over time,
that is, the integral of the error with respect to time.
Controllers that use this policy are therefore called integral
controllers (I-controllers, Fig. 3D). Owing to the fact that
the control signal at any given time depends on the error
history, I-controllers are prone to suffering from over-
shoot and even ringing (successive overshoots followed by
undershoots). Nevertheless, they reach their target state
eventually and the degree of ringing can be traded off
against the speed of response by lowering their gain. An

Figure 2. Canonical control framework
A, uff and ufb represent the feedforward and feedback
control signals, respectively; the plant is the process being
controlled. Example signals for the target output, the error
and the external disturbance are shown. The error is the
difference between the output and the target. B, example
control signals based on a target signal, f (t), and an error
signal, e(t). Kff, KP and K I are the gains for the
(proportional) feedforward, proportional feedback and
integral feedback control strategies, respectively.
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important recent finding relating to bacterial chemotaxis
establishes the necessity of integral control in biochemical
signalling under a broad set of assumptions (Yi et al.
2000) so it is entirely possible that more complex cells
such as neurones possess integral control mechanisms that
participate in activity-dependent homeostasis. Indeed,
there are many examples of modelling studies that employ

integral controllers to explore this possibility (van Rossum
et al. 2000; Buonomano, 2005; Zhang & Golowasch, 2007).
For many authors, the key issue regarding their plausibility
lies in finding a signalling network that implements
integration over a suitable timescale for homeostasis –
which is normally assumed to be a slow process requiring
reliable integration over long timescales (Turrigiano &

Figure 3. Example behaviour of a simple linear control system
Behaviour of typical linear control systems: A, system with no feedforward or feedback control showing a
perturbation in output caused by the external disturbance alone; B, proportional feedforward control; C and
D, proportional and integral feedback control; E, combination of all three linear feedforward–feedback controls.
The plant is modelled as a linear, first-order system (see Appendix) that exhibits exponential decay of its output to
zero in the absence of input. Such a model might be used to describe how the expression level of a protein in a
cell is subject to a constitutive degradation processes.

C© 2011 The Authors. Journal compilation C© 2011 The Physiological Society
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Nelson, 2000; Desai, 2003; Davis, 2006; Turrigiano, 2007).
Several modelling studies have successfully implemented
calcium-dependent control of membrane conductances,
either by explicitly integrating the calcium concentration
over time and varying conductances in proportion to this
signal (Gunay & Prinz, 2010; Olypher & Prinz, 2010), or
by varying the rate of change of conductance density in
proportion to the instantaneous calcium concentration,
thereby implicitly integrating the calcium signal (Abbott
& LeMasson, 1993; LeMasson et al. 1993). The latter
approach offers an attractive solution to the question of
plausibility, since its biological interpretation does not
require an additional ‘calcium-integrating mechanism’;
rather, the integration is performed by a model of the
dynamics of channel expression, so a ‘long’ integration
time simply corresponds to a ‘slow’ rate of change of
channel density.

Proportional and integral control policies are just two
examples of linear controllers. That is, their output for
two different inputs can be summed to give the output
when the two inputs are combined. There is a much wider
class of controllers that are non-linear, but nevertheless
quite simple to implement and plausible in biological
systems, which are highly non-linear in general. Perhaps
the most familiar example of a non-linear controller (and
one that can be found in most domestic heating systems)

Figure 4. Bang-bang control and noise
Left, a control system (with plant as in Fig. 3) employing a non-linear
bang-bang control (upper plots, details in the Appendix). For
comparison, the output of the system employing the integral
controller is shown below. Right, the output of these particular
bang-bang and integral control systems are similar in the presence of
noise.

is the bang-bang controller. As its name suggests, the
bang-bang controller simply switches a control signal ‘on’
(bang!) once the error signal is detectable, then abruptly
turns it ‘off’ (bang!) once the error reaches zero (Fig. 4).
Although this evidently entails a series of overshoots
and undershoots, the controller has the key advantages
of being exceptionally simple to implement (the control
signal merely needs to be turned on or off) and, perhaps
surprisingly, an optimal control under certain conditions
where the speed of response is important (Lasalle, 1959).
Indeed, if the amount of over/under-shooting is within
physiologically tolerable limits, bang-bang controllers
provide a way of reaching target values and compensating
fully for disturbances (on average) without needing to
integrate errors over long timescales.

What might constitute a biological example of a
‘bang-bang’ control? Many physiological processes, such
as the activation of a biochemical pathway or the firing of
an action potential, exhibit threshold behaviour: beneath
threshold, nothing happens, but once the threshold is
reached, the chain of events which follows is entirely
stereotyped and does not depend on the amount by
which the threshold is passed. Bang-bang controllers are
characterised by this kind of threshold behaviour and
can be used to describe various forms of regulatory
control in biology, including the influence of feedback
inhibitory interneurons on their target cells and the
‘on–off’ regulation of many genes.

We have not yet confronted the question of what
makes the feedback ‘positive’ or ‘negative’, which is an
important distinction because homeostatic regulation
requires negative feedback. Returning to the example
in Fig. 1, negative feedback would down-regulate hyper-
polarising channels if the membrane potential were more
negative than its target value, and up-regulate them if
the membrane potential were positive with respect to
the target value. Thus, the sign of a feedback control
(whether it is positive or negative) depends on the
dynamics of the plant. Interestingly, this means the control
mechanism must ‘know’ what effect the regulation of
a given variable has on the observables. This built-in
‘knowledge’ of how the plant behaves is an aspect of the
internal model principle of control theory – a striking and
deep result which states that any effective control system
must have an internal representation of the system it
is controlling (Francis & Wonham, 1976). How is such
knowledge embedded? This is an interesting question;
in the case of low-level regulation in individual cells,
tuning of the regulatory response probably occurs on
an evolutionary timescale. Specifically, the properties
of particular gene products (such as the biophysical
characteristics of voltage-gated ion channels) and the
properties of regulatory signalling networks (the rate
constants, interaction sites and identity of the molecules
involved) emerge through the trial-and-error nature
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of evolution as components of a functioning control
system. This does, however, introduce a ‘chicken and
egg’ dilemma: cellular components perform tasks that
are often vital for the survival of an organism, therefore
their expression in a cell needs to be regulated – how
can appropriate regulatory machinery evolve in anti-
cipation of such components appearing? As with all such
questions, the answer presumably comes from considering
the simplest, most fundamental forms of regulatory
control as starting points for the gradual introduction
of additional layers of complexity. These simple control
mechanisms might, for example, describe processes that
are rate-limited or physically constrained within particular
bounds by their nature.

So far, we have focussed on feedback control and
ignored the feedforward path. Like feedback control, feed-
forward control is capable of driving a system toward a
target state, but unlike feedback control, it is insensitive
to error in the output and therefore cannot underlie
homeostasis in isolation. Feedforward controls ‘see’ the
target signal and provide an appropriately transformed
version of this signal (simple scaling is an example of such
a transformation, as illustrated in Fig. 2B) to the plant.
Since the feedforward control signal does not depend on
measurements of the plant output, delays that are inherent
in feedback control strategies can be avoided through
their use (this can be seen by comparing the outputs
in Fig. 3C and D with that of Fig. 3E). However, in the
same way that feedback controllers can be optimised by
tuning their parameters according to the dynamics of the
plant, feedforward controllers need to ‘know’ how to scale
the control signal to avoid overshoot or undershoot. In a
neurophysiological context, feedforward controllers could
represent processes that lead to stereotyped changes in the
functional behaviour of a cell, such changes in intrinsic
excitability caused by the action of neuromodulators (see
Davis, 2006 for similar examples). More generally, feed-
forward control has been identified as a fundamental
component of gene regulation using model organisms
such as yeast (Lee et al. 2002; Mangan & Alon, 2003), whilst
at a somewhat higher ‘system’ level, it is an established
component of motor control and is integral to the theory
of motor learning in humans (Wolpert & Ghahramani,
2000).

One of the motivations we gave for the existence
of homeostatic regulation was the presence of noise in
biochemical signalling networks. Control mechanisms
counteract the perturbations introduced by external
disturbances and therefore behave as noise-attenuating
filters when the source of the noise is extrinsic (Rao et al.
2002). However, the performance of all models of homeo-
static control is also subject to the level of noise present
in the control mechanism itself. The abstract ‘sensors’ and
‘control signals’ we have been discussing are ultimately
encoded in biochemical signalling networks, which have

their own intrinsic noise. Under conditions of high noise,
it is possible that the responses due to distinct under-
lying mechanisms (employing, for example, integral vs.
bang-bang control) are effectively indistinguishable in
their performance, as illustrated in Fig. 4. As a result,
biology may favour simpler control mechanisms than
currently anticipated (Yi et al. 2000; Turrigiano, 2008).
This has important ramifications for how experimental
data are interpreted because several distinct control
strategies may be compatible with observed behaviour.
Therefore, an important line of investigation – and one
which has progressed recently in systems biology (Pedraza
& van Oudenaarden, 2005; Rosenfeld et al. 2005) – consists
of assessing the levels of noise that regulatory signals are
subjected to.

It is hopefully clear why the control-theoretic
framework is valuable for discussing neuronal homeo-
stasis (and, indeed, all forms of homeostasis). Most
obviously, it provides a consistent way of describing a
model: the target, error signal and plant output must be
identified explicitly, and the form of the controller can
be rigorously categorized. In addition, it reconciles the
potential confusion between stable, long-term changes
in a property (which correspond to changes in a target)
and ongoing changes in the property resulting from a
homeostatic response to perturbations (Fig. 1B). This
distinction can be lost due to the experimental design:
most experiments will take measurements in a regulated
property of a ‘treated’ (perturbed) group with respect to
a control group. If ongoing plastic changes are present in
both, the changes in targets will be invisible since they
are subtracted away to reveal the homeostatic component.
Potential conceptual problems in interpreting such data
can be avoided using the control theory perspective.
For example, rather that viewing Hebbian and homeo-
static processes as exerting ‘opposing’ effects neuronal
properties (e.g. Turrigiano & Nelson, 2000), they can
be reconciled as distinct features of the same control
system.

In tandem with clarifying homeostasis in general, the
control theory perspective also enables an appreciation
of the complexity of neuronal homeostasis in particular.
Firstly, even if individual control systems can be
characterized – such as those that regulate a given
conductance in a given cell type – they will interact
in the system as a whole. This is indeed observed in
recent, elegant work which probes intrinsic, synaptic and
circuit-level interactions between regulatory processes in
the crab stomatogastric ganglion (Grashow et al. 2010)
and at the Drosophila neuromuscular junction (Bergquist
et al. 2010). Secondly, the control strategies mentioned
so far (and the infinitude of alternative strategies we
have omitted) can all be combined together in any
individual control system. For example, combinations of
feedforward and feedback control can deliver improved
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performance over the use of one single strategy alone (Kuo,
2002). However, the complexity of these mechanisms
is dependent on the sophistication of the biochemical
signalling machinery available and on the level of intrinsic
noise in the system. These final points are pertinent to
issues raised in the next section, where we consider how
homeostatic control might exhibit a hierarchy within a
single cell.

Distributed vs. central control in single cells

A microscope image of a typical neurone points
to an interesting logistical problem for mechanisms
that regulate intrinsic membrane properties. Dendritic
arbours are complex, with long, thin processes and
varicosities that effectively compartmentalise biochemical
and electrical signals. Distributions of membrane
conductances therefore exert local effects as well as
influencing cell-wide electrical properties. Moreover,
feedback signals representing the state of physiological
variables in such compartments will only reflect local
conditions. It is hard to imagine how regulatory control
can be orchestrated centrally (at the soma, for example)
such that the target intrinsic properties are satisfied in all
compartments of the cell simultaneously. This problem,
which has received a great deal of attention in the context
of synaptic homeostasis (Turrigiano, 2008), has not been
addressed in detail for homeostatic control of intrinsic
properties (but see Siegel et al. 1994 and comments in
Goldberg et al. 2002).

The preceding argument suggests that homeostatic
regulation of membrane conductances might operate
locally. Indeed, much of the subcellular machinery
required for feedback control exists within dendritic

compartments. For example, voltage-gated calcium
channels, which are well-suited to sensing membrane
depolarisation, are distributed throughout the dendrites
of many cell types. In addition, mRNAs and poly-
ribosomes are found in neuronal processes and have
been demonstrated to mediate local, activity-dependent
protein synthesis (Sutton & Schuman, 2006) and regulate
dendritic ion channel expression (Raab-Graham et al.
2006). Functional evidence for local regulation of
dendritic excitability exists in a variety of contexts and
may reflect Hebbian as well as homeostatic modulation
(Frick & Johnston, 2005; Kim et al. 2007; Hammond et al.
2008).

What consequences would such distributed regulatory
mechanisms have for the functional properties of a
neurone? This has not been explored to date, but we
would suggest that spatially autonomous homeostatic
regulation implies richer emergent behaviour in single
cells than global, cell-wide mechanisms. It may also turn
out that regulatory control of gross cell properties –
such as ‘intrinsic excitability’ – result from the
combined action of low-level, distributed mechanisms.
One global effect of local regulation that was observed
in an early computational study (Siegel et al. 1994)
is the establishment of non-uniform distributions of
voltage-gated conductances across dendritic trees. Such
distributions are observed experimentally for a variety
of conductances, such as sodium channels (Stuart &
Hausser, 1994) and HCN channels (Magee, 1998), whose
distribution has indeed been demonstrated to be activity
dependent (Shin & Chetkovich, 2007). Local homeo-
stasis therefore provides a potential mechanism for the
emergence, maintenance and adaptation of gradients in
ion channel expression in single cells.

Figure 5. Parameter space and the mapping to intrinsic properties
A, the mapping from the parameter space of membrane conductances to the resulting intrinsic properties (in
‘property space’) is complex, and disparate parameter combinations may be mapped to the same point, as
illustrated by the squashing of the points onto a plane in property space. (i) As a consequence, the inverse
mapping is undefined, so it is difficult to select parameter combinations for a given intrinsic behaviour. (ii) One
aspect of the complexity of the mapping is illustrated by the fact that average parameters, x̄, do not necessarily
get mapped to average properties. B, experimental evidence and theoretical work suggest that neurones with
stereotyped intrinsic behaviour can have very different underlying conductance parameters. If large numbers
of cells are measured, they tend to occupy a connected region of parameter space with a particular shape.
Experimental evidence also suggests that many conductance parameters are correlated across different members
of a neuronal population; this may indicate that the underlying parameter set is effectively a low-dimensional
space within the high-dimensional parameter set – ‘submanifold’. Such a submanifold would have fewer effective
degrees of freedom, simplifying the problem of activity-dependent regulation. C, the description of conductance
parameters in B would predict that neuronal subtypes with distinct electrophysiological properties (fast spiking
vs. accommodating, for example) would be distinguished by the shape of their submanifolds. The distinguishing
features between types would therefore be most evident in how conductances are co-regulated, rather than in
the relative abundance of different conductances within a cell. We have illustrated this by showing that intrinsic
properties can vary in certain respects along the submanifold (in input resistance, in the traces shown in the insets)
whilst retaining important characteristics (fast spiking vs. accommodating).
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The issue of noise becomes more important
if ionic conductances are indeed locally regulated.
Fluctuations in membrane potential resulting from
stochastic channel gating are a dominant form of
noise in small dendritic compartments (Manwani &
Koch, 1999; Faisal et al. 2005; Cannon et al. 2010).
As a consequence, local activity-dependent homeo-
stasis might be a situation where simple control
strategies (such as the bang-bang controller mentioned
earlier) may be more relevant than precisely tuned
integral controllers if the noise level leads to equivalent
performance. Distinguishing between these possibilities
would be extremely difficult experimentally, for it would
require long-term, high-resolution monitoring of ion
channel distributions in the smallest neuronal processes.
Computational models are therefore an attractive medium
for investigating putative models of local homeostasis and
the effects of noise.

Even if it turns out that many low-level cell properties
are regulated by simple mechanisms, there is still
room for more complex mechanisms that control
emergent intrinsic properties in ways that are relevant
to information processing, as has been explored by
several authors (Stemmler & Koch, 1999; Triesch,
2005). Furthermore, in order to constrain and control
higher-order functional properties (such as spike shape or
dendritic integration characteristics), cells must regulate
a host of different conductances in concert. This
far-from-trivial problem will be discussed next.

Lost in (parameter) space

Neurones express a bewildering array of ion channel
types and this diversity reflects the numerous constraints
imposed by their biophysical properties (Marder &
Goaillard, 2006). For example, pyramidal neurones in
the mammalian hippocampus scale their ion channel
distribution in a way that sharpens the integration
time-window for distal input (Magee, 1998), but also
maintain sensitivity to physiologically relevant frequencies
in their input such as the theta rhythm (Leung & Yu, 1998)
and, of course, need to maintain stable resting membrane
potential.

A useful way of describing the diversity of conductances
in neurones is to say that neurones have high-dimensional
parameter spaces (Taylor et al. 2006; Sobie, 2009).
Parameters can be thought of as the functional expression
levels of each conductance type, but can also include
more general properties such as the kinetics and voltage
dependence of each conductance. Allowing for the
possibility that each parameter may vary independently
leads to the concept of a multidimensional space as
illustrated in Fig. 5. Each point in parameter space

corresponds to a specification of the conductance
properties of an entire cell.

Two important questions emerge from this
description:

1. How do the points in parameter space map to intrinsic
properties such as input resistance, resting membrane
potential, firing threshold and so on (‘property space’
in Fig. 5)?

2. If we could measure the conductance parameters of
individual cells among a homogeneous population
of real cells – or model cells with stereotyped
intrinsic properties – how would they be distributed
in parameter space?

Ever since the Hodgkin–Huxley model established a
quantitative relationship between membrane conductance
and intrinsic properties, both questions have been
extensively investigated experimentally and theoretically.
Naturally, many of the insights that have been gained about
questions (1) and (2) had to wait until the development of
sufficiently powerful computer hardware. Early modelling
work identified a complex, non-linear mapping between
conductance densities of Hodgkin–Huxley type models
and the intrinsic properties of model membranes as
described by spiking frequency vs. input (FI) curve
(Foster et al. 1993). This anticipated later work which has
employed substantial computational resources to explore
the parameter spaces of cells with a particular intrinsic
behaviour and entire networks (Prinz et al. 2003, 2004;
Taylor et al. 2006, 2009; Sobie, 2009). An important (and
perhaps largely anticipated) finding is that parameter
sets that correspond to a given intrinsic behaviour are
non-convex. Non-convexity is illustrated in Fig. 5A, where
the parameter values of a set of cells sit in a c-shaped set; as
a consequence, the average of the conductance parameters
of several different neurones does not give rise to average
intrinsic properties (Golowasch et al. 2002).

Non-convexity and the resultant failure of averaging
pose problems when studying conductance regulation
across a whole population of cells: it may not make
sense to look at average conductance profiles, since the
intrinsic properties they give rise to do not necessarily
correspond to these averages (Marder & Taylor, 2011).
This issue is acknowledged in recent experimental work
that investigates conductance distributions in crustacean
rhythm-generating circuits, where multiple conductances
were measured in parallel (Schulz et al. 2006; Goaillard
et al. 2009).

Moreover, there are experimentally observed
instances where distinct conductance profiles map
to indistinguishable intrinsic properties (Swensen
& Bean, 2005). Although such experimentalists can
never exhaustively measure conductance parameters,
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theoretical work has established that many distinct
points in parameter space give rise to identical intrinsic
properties (Taylor et al. 2009): that is, the mapping
from parameter space to ‘property space’ is many-to-one
(Fig. 5A).

Aside from introducing practical problems into
experiments, the shapes of parameter sets, and the
non-linear, many-to-one nature of the mapping between
conductance parameters and intrinsic properties, prompts
the more fundamental question of how neurones ‘know’
which way to move through parameter space as they
regulate their conductances. For example, we may hypo-
thesise that neurones regulate their resting membrane
potential homeostatically. Error signals representing the
difference between the actual membrane potential and
the desired membrane potential ultimately need to
be converted into control signals that regulate, say,
the expression densities of the various ion channels
in the membrane. If many different combinations of
channel densities can lead to the desired change, how
does the regulation mechanism settle on any particular
combination?

The co-evolution of functional components and
constraints in biological systems probably occurs in a
modular fashion: new components are integrated into
existing metabolic networks along with their functional
interactions (Barabasi & Albert, 1999; Jeong et al.
2000; Barabasi & Oltvai, 2004). As a result, regulatory
mechanisms are also likely to operate in a modular fashion,
implying that groups of conductances are co-regulated
(Ball et al. 2010). Evidence for co-regulation already exists
in well-characterised preparations such as the crustacean
stomatogastric ganglion (MacLean et al. 2003, 2005;
Schulz et al. 2006, 2007) and this suggests that although
neurones have a potentially high-dimensional parameter
space, their effective parameter space is a restricted sub-
set that locally looks like a much lower dimensional
space, or in mathematical jargon, a submanifold (Fig. 5B).
Parameter submanifolds would explain how neurones
solve the problem of regulation, as a given cell type would
have a well-defined direction to move in parameter space.
In addition, the submanifold description allows a more
flexible definition of electrophysiological phenotypes as
belonging to distinct submanifolds (Fig. 5C). Such a view
is compatible with the large degree of variability observed
in conductance parameters of cells with a given identity
(Marder, 2011), and may explain a larger amount of
variation than can be accounted for by random effects.

Where next?

What are the most promising avenues for further research?
This depends on the question being asked. We can
identify two main questions: (i) understanding neuro-
nal homeostasis as it happens in specific organisms and

(ii) understanding how homeostatic mechanisms can be
implemented in biology in general. The former question
is important if we want to understand development,
function and disease and manipulate the physiology of
existing organisms to our own ends. It is also the harder
question: probing homeostatic compensation in detail
requires many physiological parameters to be measured
and controlled simultaneously and data spanning multiple
timescales, from milliseconds to months. Optogenetic
methods (Gradinaru et al. 2010; Zhang et al. 2010)
permit non-invasive measurement and manipulation of
electrical signals on the single-cell level over timescales
that potentially span the lifetime of an organism. In
addition, existing molecular biological techniques such as
fluorescent tagging allow the measurement of trafficking
and stable expression of important proteins such as ion
channels that are the target of homeostatic regulation.

The second question, which addresses homeostasis
in a general setting, is already part of an ongoing
programme in systems biology. Simple model organisms
such as yeast and E. coli provide tractable examples of
biological networks that exhibit homeostatic regulation.
From an evolutionary viewpoint, the principles learned
in these simple organisms will be applicable to more
complex organisms and to nervous system function. These
principles can be implemented in computational models
of single neurones and neuronal networks, providing
a bridge between relatively well-understood metabolic
networks and the currently obscure details of homeostatic
signalling in neurones.

Finally, in order to make sense of current and future
findings, we need a coherent theory. Luckily this theory
exists, but in a field from which mainstream neuronal
physiology has diverged. Our belief is that in this respect,
neurophysiology, like some of the homeostatic systems
it describes, might benefit from a return to its ‘previous
state’.

Appendix: model details

The traces in Fig. 3 and Fig. 4 were obtained by modelling
a simple plant (a first-order linear integrator) subject to
feedforward and feedback control as specified in the text.
Solutions were obtained by numerical integration (back-
ward Euler).

The plant equation and control gains are as follows:

Plant: τ
dy

dt
= yrest − y + u + η

Control: u = uff + ufb

Feedforward: uff (t) = K ff f (t)
Feedback: ufb(t) = K Pe(t) + K I

∫ t

0 e(s) ds
+ K BBH(e(t))

Error: e(t) = y − f (t)
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where y is plant output, τ is plant time-constant = 1.3
(arbitrary units), K ff is feedforward gain = 1/τ, f is target
output, K P is proportional gain = 2, K I is the integral
gain = 0.4, K Bis bang-bang gain = 0.35, H is the Heaviside
step-function.

Noise, η,was uniformly distributed with zero auto-
correlation and with power equal to −3 dB relative to the
target signal.
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